Part 2: Logic

Andrew W. Crapo Natural Semantics, LLC

Logic: the Second Pillar of Semantic Modeling

Propositional Logic

- A *proposition* is a statement which can be either *true* or *false*
 - i. e.g., "it is raining (here, now)"
- A proposition is often represented by a letter, often 'p' or 'q'
- There are 5 logical operators that can generate additional propositions
 - i. Conjunction: '^', '&', 'and'
 - Given *p* is *true* and *q* is *false*, what is '*p* and *q*'? (*false*)
 - Given p is true and q is true, what is 'p and q'? (true)
 - ii. Disjunction: 'v', '|', 'or'
 - Given *p* is *true* and *q* is *false*, what is '*p* or *q*'? (*true*)
 - Given *p* is *true* and *q* is *true*, what is '*p* or *q*'? (*true*)
 - iii. Implication: '→', 'implies', '*if ... then...*'
 - Given *p* is *true* and *if p then q*, what can you say about *q*? (*true*)
 - Given q is true and if p then q, what can you say about p? (nothing)

Logic (cont.)

- Propositional Logic (cont.)
 - There are 5 logical operator (cont.)
 - iv. Necessary and sufficient conditions: '↔', 'if and only if
 - Given p is true and p if and only if q, what can you say about q? (true)
 - Given q is true and p if and only if q, what can you say about p? (true)
 - v. Negation: '¬', 'not'
 - Given *p* is *true*, what is *not p*? (false)
 - Given p is true, what is not (not p)? (true)

Logic (cont.)

- Predicate Logic, AKA First Order Logic
 - Predicate logic allows representation of the contents of a proposition
 - A predicate is a symbol which takes argument(s) and returns true or false
 - The number of arguments is called *arity*
 - Predicates with arity 1 can represent class membership
 - PresidentOfUSA(GeorgeWashington) means GeorgeWashington ∈ PresidentOfUSA
 - Predicates with arity 2 can represent binary relationships between things
 - wife(GeorgeWashington, MarthaDandridge)
 - Predicates with arity 2 can also represent characteristics--data about something
 - dateOfBirth(GeorgeWashington, "22 February 1732")
 - Predicates with arity 1 can be transformed to arity 2
 - PresidentOfUSA(GeorgeWashington) => is-a(GeorgeWashington, PresidentOfUSA)

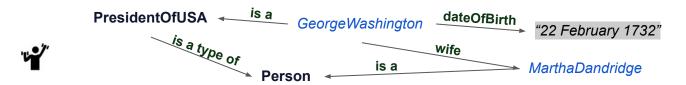
Logic (cont.)

- Predicate Logic, AKA First Order Logic (cont.)
 - Models with only arity-2 predicates are directed mathematical graphs and can be so visualized

- Each arity-2 predicate forms a triple with a subject, predicate, and object
 - predicate(subject, object) = <subject> predicate> <object>
 - \blacksquare wife(GeorgeWashington, MarthaDandridge) \equiv <GeorgeWashington> <wife> <MarthaDandridge>
- We will often refer to a predicate as a property
- A *function* is a symbol that takes 0 or more arguments and returns another non-logical symbol:
 not *true*, not *false*, not one of the 5 logical operators. More about functions later.

Logic Exercise

Create a model equivalent to this visual graph



Solution

```
uri "http://sadl.org/Logic1.sadl" alias Logic1.

Person is a class.
PresidentOfUSA is a type of Person.

dateOfBirth is a property .
wife is a property.

GeorgeWashington is a PresidentOfUSA.
MarthaDandridge is a Person.

GeorgeWashington has dateOfBirth "22 February 1732", has wife MarthaDandridge.
```

Alternate Solution

```
uri "http://sadl.org/Logic1bb.sadl"alias logic1bb.

Person is a class.
PresidentOfUSA is a type of Person.

dateOfBirth is a property .
wife is a property.

GeorgeWashington is a PresidentOfUSA,
    with dateOfBirth "22 February 1732",
    with wife MarthaDandridge.

MarthaDandridge is a Person.
```

Things to Note

```
uri "http://sadl.org/Logic1bb.sadl" alias logic1bb.

Person is a class.
PresidentOfUSA is a type of Person.

dateOfBirth is a property .
wife is a property.

GeorgeWashington is a PresidentOfUSA,
   with dateOfBirth "22 February 1732",
   with wife MarthaDandridge.

MarthaDandridge s a Person.
```

A concept can be used before it is defined.

Quantification

- Quantifiers bind variables to non-variable symbols
 - Quantifiers allow us to make statements about multiple things declaratively
 - There are two quantifiers
- Existential quantifier
 - Symbol: ∃, read as "there exists"
 - Example: ∃x: Person(x) ^ loves(x, Logic)
 - "There exists x such that x is a Person and x loves Logic" ("Someone loves logic")
- Universal Quantifier
 - Symbol: ∀, read "for all"
 - Example: $\forall x$: RichPerson(x) \rightarrow loves(x, Money)
 - "For all x, if x is a RichPerson then x loves Money" ("All rich people love money")
- Example with multiple quantifiers
 - $\exists x: (Man(x) \land \forall y: (Man(y) \rightarrow (shaves(x,y) \leftrightarrow \neg shaves(y,y))))$
 - "There is a man who shaves all and only men who do not shave themselves" (the barber 10 paradox -- why is it a paradox?)²

Additional Information

• For a layman's overview of logic see https://en.wikipedia.org/wiki/Logic.